Modellierung regulatorischer Netzwerke von Säugetieren und Einsatz von Methoden zur strukturellen Analyse und Identifikation von Kernkomponenten

نویسنده

  • Björn Goemann
چکیده

Background: Currently, there is a gap between purely theoretical studies of the topology of large bioregulatory networks and the practical traditions and interests of experimentalists. While the theoretical approaches emphasize the global characterization of regulatory systems, the practical approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap between these opposite approaches, one needs to combine 'general' with 'particular' properties and translate abstract topological features of large systems into testable functional characteristics of individual components. Here, we propose a new topological parameter – the pairwise disconnectivity index of a network's element – that is capable of such bridging. Results: The pairwise disconnectivity index quantifies how crucial an individual element is for sustaining the communication ability between connected pairs of vertices in a network that is displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes), an edge (i.e., reactions, interactions), as well as a group of vertices and/or edges. The index can be viewed as a measure of topological redundancy of regulatory paths which connect different parts of a given network and as a measure of sensitivity (robustness) of this network to the presence (absence) of each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise disconnectivity index has been applied to the analysis of several regulatory networks from various organisms. The importance of an individual vertex or edge for the coherence of the network is determined by the particular position of the given element in the whole network. Conclusion: Our approach enables to evaluate the effect of removing each element (i.e., vertex, edge, or their combinations) from a network. The greatest potential value of this approach is its ability to systematically analyze the role of every element, as well as groups of elements, in a regulatory network. Published: 2 May 2008 BMC Bioinformatics 2008, 9:227 doi:10.1186/1471-2105-9-227 Received: 23 July 2007 Accepted: 2 May 2008 This article is available from: http://www.biomedcentral.com/1471-2105/9/227 © 2008 Potapov et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. BMC Bioinformatics 2008, 9:227 http://www.biomedcentral.com/1471-2105/9/227 Page 2 of 15 (page number not for citation purposes) Background Recent advances in graph theory have provided a new view on the topological design of different real-world networks [1-6]. Such systems exhibit small-world properties: They are surprisingly compact (i.e., their diameter is rather small) and display increased clustering features [7]. Moreover, they show a scale-free topology and follow a powerlaw type of the degree distribution: most components exhibit only one or two connections, but a few are involved in dozens and function as hubs, thereby providing networks with high robustness against random failures [1-3]. Various biological networks, such as metabolic or protein-protein interaction networks, show a scale-free topology [1,2,5] that emerges as a hallmark of modern systems biology. However, by itself, the fact that a network has scale-free features is of limited practical use to biologists because power laws occur widely in nature and can have many different origins [8]. Currently, there is a gap between purely theoretical studies of the topology of large regulatory networks, on the one hand, and the practical traditions and interests of experimentalists, on the other hand. While the theoretical approaches emphasize the global characterization of regulatory systems as whole entities, experimental (even high-throughput) approaches usually focus on the role of distinct molecules and genes in regulation. There is a rather limited interface between them. Both approaches have not been integrated to study complex regulatory systems. To reconcile these apparently opposite views, one needs to combine 'general' with 'particular' aspects, as it is attempted by modern systems biology approaches, and translate rather abstract topological features of large systems into testable functional characteristics of individual components. So far, few such graph-theoretical characteristics have been explored for the analysis of biological networks [9-11], which are expected to have their particular properties. There is a great need for approaches capable to quantitatively evaluate the importance of individual components in complex biological systems. Centrality analysis provides a valuable method for the structural, i.e. topological, analysis of biological networks. It allows to identify key elements within networks and to rank network elements such that experiments can be tailored to interesting candidates [10,11]. Local approaches such as the degree of a vertex (i.e., the number of its adjacent edges) help to find important molecules/genes which directly control many other molecules/genes, but fail to identify key regulators which are capable of affecting other molecules/genes in an indirect fashion. Other parameters, such as closeness and betweenness centrality, consider both local and distant connections within a network [9-12]. Closeness centrality evaluates how close a vertex (molecule/gene) is to all other vertices. Betweenness centrality measures how frequently a vertex appears on all shortest paths between two other vertices in a whole network [12-14]. Liu and colleagues [15] tested relationships between the phylogenetic profile of an enzyme and its topological importance in metabolic networks. They found that betweenness centrality is a good predictor of how many bacterial species have a particular enzyme. In contrast, the relationship with closeness centrality is much weaker or non-existent. This reflects the fact that the closeness centralities of a vertex and its immediate neighbors are rather similar and differ much less than their betweenness centralities. The representative power of betweenness centrality as a biologically relevant parameter was further confirmed in the topological analysis of mammalian networks of transcription factor genes: Among several topological characteristics tested, the betweenness centrality of individual transcription factor genes was found to be the most representative and relevant in regard to the biological significance of distinct elements [16]. In protein networks, betweenness centrality is rather helpful for identifying key connector proteins, i.e., bottlenecks, with particular functional and dynamic properties [17]. Betweenness centrality has been used to search for community structures in biological networks [12] and their hierarchical decomposition into subnetworks [18]. Thus, betweenness centrality has emerged as a promising measure of the biological significance of network elements. Unfortunately, the approach based on the betweenness centrality suffers from some significant limitations due to the inherent nature of this parameter, which are finally becoming manifested in a restricted qualification for the analysis of regulatory networks. In the following we identify these limitations and propose with the pairwise disconnectivity index a new methodology that overcomes them. Subsequently, we apply the method to the analysis of various biological networks. Results Betweenness centrality and its limitations in analyzing regulatory networks In regard to the needs of an analysis of regulatory networks there are two major disadvantages of betweenness centrality. Firstly, shortest paths are supposed to be the most important ones, which is a big oversimplification and misleading. The importance of a path is determined not so much by its length, i.e., the number of reactions, but rather by the integral efficiency of all these reactions. This efficiency depends on many instances, such as the concentrations of the participants, rate constants, etc. Longer paths can be faster and more efficient than shorter ones. For instance, in regulatory networks, the initiation of transcription and translation is typically governed by sets of specific factors. This increases the length of the corBMC Bioinformatics 2008, 9:227 http://www.biomedcentral.com/1471-2105/9/227 Page 3 of 15 (page number not for citation purposes) responding paths, but drastically improves the efficiency and specificity of these processes. In a similar way, scaffold and adaptor proteins, which themselves are not enzymes, recruit downstream effectors in signaling pathways and enhance both the efficiency and specificity of signal propagation. Moreover, in most regulatory networks, like gene networks, an inherent problem is that the real length of edges is not defined at all. Each single edge commonly summarizes a set of events and describes the causal relations between genes. But this kind of abstraction does not say anything about the complexity and length of the corresponding processes. Thus, dealing with inconsistent semantics of the edges renders the definition of a shortest path in these networks highly problematic. Secondly, betweenness centrality can be applied only to vertices that are between other ones. Peripheral vertices, i.e., vertices having either zero incoming or outgoing degree, are not considered. That immediately excludes many extracellular ligands, receptors, target molecules and genes from the analysis of a signaling network (Figure 1). Such components, however, directly respond to inputoutput functionality of the network and therefore are of key significance. Moreover, their individual topological significance in the network may vary in a wide range, as it can be seen when comparing the connectedness of the start-points S1 and S2, or end-points T1 and T2 in Figure 1. However, in terms of betweenness centrality, all of them are attributed with zero values which fail to reflect the individual connectedness of such input/output elements within the whole network. We therefore developed the concept of the pairwise disconnectivity index as a new topological metric, which evaluates alternative though longer paths as well and can be used to characterize the topological significance of all Some vertices at the periphery of a regulatory network (the places where signals start or get their targets) can be rather significant Figure 1 Some vertices at the periphery of a regulatory network (the places where signals start or get their targets) can be rather significant.A: The topological impact of start-point S1 is bigger than that of start-point S2. Both, white and gray vertices are on some path beginning in S1, while S2 is limited on the gray ones. B: The topological significance of end-point T1 is bigger than that of end-point T2 because of being reachable from all gray and white vertices. However, in terms of betweenness centrality, all of them are attributed with zero values which fail to reflect the individual connectedness of such input/output elements within the whole network. (A) (B)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Die Logik des Lebens Zur Schlüsselrolle von KI-Methoden in der Biologie der Zukunft

Wie kaum eine andere Wissenschaft hat die Biologie in den letzten 10 Jahren von Entwicklungen in der Informatik profitiert. Dabei spielen Methoden und Ansätze aus der Künstlichen Intelligenz bereits heute eine Schlüsselrolle bei der Erforschung biologischer Prozesse und bilden ein wichtige Grundlage für die Erhebung und Analyse einer stetig wachsenden Menge von Daten mithilfe effizienter und ma...

متن کامل

Identifikation eines vereinigten Modells für Ventilationsmechanik und Gasaustausch bei maschineller Beatmung

Die Identifikation von Ventilationsmechanik und Gasaustausch mit einem vereinigten Modell liefert für die beiden wichtigsten Klassen von Modellen zur Beschreibung physiologischer und pathologischer Eigenschaften der Lungen erstmals konsistente patientenspezifische Parameter. Dies ist sowohl für die medizinische Grundlagenforschung als auch für die Weiterentwicklung computergestützter Systeme zu...

متن کامل

Entwicklung von prozessorientierten Informationssystemen für die industrielle Dienstleistungsbeschaffung

Durch seinen Anteil von fast 70 Prozent der deutschen Bruttowertschöpfung gewinnt der Dienstleistungssektor zunehmend an Bedeutung. Den wichtigsten Teilbereich bilden industrielle Dienstleistungen. Durch sie eröffnen sich für Maschinenund Anlagenhersteller sowie für Dienstleister Nutzenpotentiale zur nachhaltigen Sicherung von Wettbewerbsvorteilen. Insbesondere tragen industrielle Instandhaltun...

متن کامل

Verfahren zur Bestimmung der Zuverlässigkeit von Kommunikationsnetzwerken: Eine Studie zu exakten und approximativen Verfahren

Mit zunehmendem Einsatz von netzbasierten IT-Anwendungen ist die Zuverlässigkeit und Sicherheit der zugrundeliegenden Kommunikationssysteme und netzwerke von immer größerer Bedeutung für Unternehmen. Da in der Realität Kommunikationsverbindungen zwischen zwei Standorten mit einer gewissen Wahrscheinlichkeit ausfallen können, müssen Kommunikationsnetzwerke so aufgebaut werden, dass die Wahrschei...

متن کامل

Data Mining-Konzepte und graphentheoretische Methoden zur Analyse hypertextueller Daten

Der vorliegende Artikel hat das Hauptziel, eine verständliche Übersicht bezüglich der Einsetzbarkeit von Data Mining-Konzepten auf hypertextuellen Daten zu geben, wobei insbesondere graphentheoretische Methoden fokussiert werden. Die Anwendung von klassischen Data Mining-Konzepten, wie z.B. die Clusterund die Klassifikationsanalyse, auf webbasierte Daten wird als Web Mining bezeichnet. Ein Teil...

متن کامل

Ein Ansatz zur methoden- und werkzeuggestützten Anforderungs- und Systemspezifikation auf der Grundlage objektorientierter Modellierungs- und Simulationstechniken

Vorgestellt wird ein Ansatz zur objektorientierten Modellierung, Simulation und Animation von Informationssystemen. Es wird ein Vorgehensmodell dargestellt, mit dem unter Verwendung des beschriebenen Ansatzes Anforderungsoder Systemspezifikationen von Rechnergestützten Informationssystemen erstellt werden können. Der Ansatz basiert auf einem Metamodell zur Beschreibung Rechnergestützter Informa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011